Oct 20, 2020   2:27 p.m. Vendelín
Academic information system

Course syllabus B1-ZKM - Basic kvantitative methods (FCE - SS 2019/2020)

     Information sheet          ECTS          Syllabus          

     Slovak          English          

Slovak University of Technology in Bratislava
Course unit code:
Course unit title: Basic kvantitative methods
Mode of delivery, planned learning activities and teaching methods:
2 hours weekly (on-site method)
seminar4 hours weekly (on-site method)

Credits allocated:
Recommended semester/trimester: Landscaping and Landscape Planning - bachelor (compulsory), 2. semester
Level of study: 1.
Prerequisites for registration:
Assesment methods:
Pre-test and final test
Learning outcomes of the course unit:
The course provides introduction to the probability theory and summary statistics, such as random variables, their probability distributions and parameters of distributions. Further, estimators and confidence intervals, hypothesis testing, correlation and regression analysis of sample data. Afterwards students will be able to handle and analyse samples of statistical data that accurs in landscaping and landscape planning.
Course contents:
• Population and sample. Discrete and continuous randpm variables.
• Summary statistics, estimators and confidence intervals of parameters of population (average, mode, median, standard deviation, confidence intervals...)
• Graphical visualisation of samples, histogram, box-plot ...
• Random variable, continuous and discrete distributions of random variables.
• Probability functions, empirical and theoretical cumulative distribution functions, basic types of probability functions used in landscape engineering.
• Estimators of momenta and basic methods of fitting of probability functions. Crteria of quality of fitting including graphical methods.
• Introduction into hypotesis testing. Structure of hypothesis testing. Examples of tests: t-test, chi^2-test.
• Correlation and regression analysis. Assumptions (normality, independence, linearity, homoscedascity...) a diagnozis of linear regression (r, R-square adjusted and normalized, RMSE, MAE, AIC etc.). Outliers, influential observation
• Algorithms for the choice of variables in multivariable linear regression (stepwise regression, lasso)
Recommended or required reading:
ANDĚL, J. Matematická statistika. Praha : SNTL, 1985. 346 p.
KALICKÁ, J. -- KRIVÁ, Z. Praktická štatistika v Exceli. Bratislava : STU v Bratislave, 2005. 258 p. ISBN 80-227-2295-2.
VARGA, Š. Matematická štatistika. Bratsilava : Nakladateľstvo STU, 2012. 219 p. ISBN 978-80-227-3789-0.

Kalina, M. - Bacigál, T., - Schiesslová, H., Základy pravdepodobnosti a matematickej štatistiky, STU v Bratislave, 2010
2. HELSEL, D.R. – HIRSCH, R.M.: Statistical Methods in Water Resources. U.S. Geological Survey, Techniques of Water-Resources Investigations Book 4, Chapter A3. http://pubs.usgs.gov/twri/twri4a3/html/toc.html

Language of instruction:
Courses evaluation:
Assessed students in total: 33

27,3 %
21,2 %
3,0 %18,2 %30,3 %0 %
Name of lecturer(s):
doc. Ing. Tomáš Bacigál, PhD. (examiner, instructor) - slovak
doc. RNDr. Jana Kalická, PhD. (examiner, instructor, lecturer) - slovak
prof. RNDr. Martin Kalina, PhD. (examiner, instructor, lecturer) - slovak
prof. RNDr. Radko Mesiar, DrSc. (person responsible for course) - slovak
Last modification:
16. 4. 2019
prof. RNDr. Radko Mesiar, DrSc. and programme supervisor

Last modification made by Ing. Peter Korčák on 04/16/2019.

Type of output: