Jan 29, 2020   5:55 p.m. Gašpar
Academic information system

Persons at STU


This page displays all publicly accessible information about the desired person. Some information about the person's occupation and offices may be hidden.

doc. Ing. German Michaľčonok, CSc.
Identification number: 245
University e-mail: german.michalconok [at] stuba.sk
 
Docent CSc.,PhD. - Institute of Applied Informatics, Automation and Mechatronics (MTF)

Contacts     Lesson     Projects     Publications     
Bodies     Supervised theses     Conferences     

The following list contains all information available to the publication.

NÉMETH, M. -- BORKIN, D V. -- MICHAĽČONOK, G. The comparison of machine-learning methods XGBoost and LightGBM to predict energy development. In Computational Statistics and Mathematical Modeling Methods in Intelligent Systems. Cham: Springer, 2019, p. 208--215. ISBN 978-3-030-31361-6.

Original name: The comparison of machine-learning methods XGBoost and LightGBM to predict energy development
Name in Slovak:
Written by (author): Ing. Martin Németh, PhD. (34%)
Dmitrii Vladimirovič Borkin (33%)
doc. Ing. German Michaľčonok, CSc. (33%)
Department: Institute of Applied Informatics, Automation and Mechatronics
Kind of publication: contributions in anthologies, chapters in monographs/textbooks, abstracts
Collection: Computational Statistics and Mathematical Modeling Methods in Intelligent Systems
Subtitle:
Starting page: 208
Up to page: 215
Number of pages: 8
Original language: English
Publication category: AFC Publikované príspevky na zahraničných vedeckých konferenciách
Scientific field:
Key words: slovak: energy prediction, XGBoost, LightGBM, machine learning
Year of submission: 2019
Year of transmission: 2019
 
Entry made by: Ing. Martin Németh, PhD.
Last change: 10/26/2019 22:21 (Data import from library)


Source specification:

Computational Statistics and Mathematical Modeling Methods in Intelligent Systems. Cham: Springer, 2019. ISBN 978-3-030-31361-6.

Original name: Computational Statistics and Mathematical Modeling Methods in Intelligent Systems
English name:
Czech name:
Editor:
Kind of publication: conference proceedings
ISBN: 978-3-030-31361-6
Publisher: Springer
Place of publishing: Cham
Issue and volume number:
Year of publication: 2019
Issue number:
Number of pages:
Type of scope:
Kind of collection:
Entry:
Original language:
Description in original language:
Description in English:
Description in Czech:
Year of submission: 2019
Year of transmission:
Last change: 10/26/2019 22:21 (Data import from library)