May 25, 2019   9:06 a.m. Urban
Academic information system

Summary of topics offered - Slovak university of technology in Bratislava


Basic information

Type of work: Dissertation thesis
Topic: Návrh alternatívneho materiálového modelu pre numerické modelovanie správania sa hyperelastických materiálov
Title of topic in English: Alternative material model proposal for numerical simulation of the behaviour of hyperplastic materials
State of topic: approved (prof. Ing. Miloš Musil, CSc. - Chairperson of Departmental Board)
Thesis supervisor: doc. Ing. Ladislav Écsi, PhD.
Faculty: Faculty of Mechanical Engineering
Supervising department: Institute of applied mechanics and mechatronics - FME
Max. no. of students: --
Academic year:2019/2020
Proposed by: doc. Ing. Ladislav Écsi, PhD.
Annotation: Dizertačná práca sa zameriava na vypracovanie a numerické overenie materiálového modelu pre hyperelastické materiály na báze St-Venantovho-Kirchhoffovho materiálu s alternatívnymi Lagrangeovskými a Eulerovým mierkami, kde výsledná mierka pretvorenia je kombináciou alternatívnych mierok s neznámymi koeficientami, ktoré treba vypočítať tak, aby numerická odozva sa zhodovala odozvou materiálu z experimentálnych testov. V Lagrangeovom opise konštitutívnej rovnice materiálu sa využíva nelineárna mechanika kontinua materiálu zdokonalená na Ústave aplikovanej mechaniky a mechatroniky, ktorá je schopná objektívne a termodynamicky konzistentne formulovať konštitutívnu rovnicu materiálu v rýchlostnom tvare.
Annotation in English: The aim of the PhD thesis is to develop and verify a material model for hyperelastic materials based on the StVenant-Kirchhoff material model which uses alternative Lagrangan and Eulerian finite strain measures, where the final strain measure is a combination of alternative strain measures using unknown coefficients which have to be determined in such a way that the numerical response coincides with the experimental response observed during mechanical testing of the material. In the Lagrangian description of the constitutive equation of the material an improved nonlinear continuum theory of finite-deformations of elastic material is used, improved at the department of Applied Mechanics and Mechatronics, utilizing objective and thermodynamically consistent formulation of the rate form of the constitutive equation of the material.



Limitations of the topic

To sign up for a topic it is necessary to fulfil one of the following restrictions

Limit to study programme
The table shows limitations of study programme, field, track the student has to be enrolled in to be able to register for a given topic.

ProgrammeTrackTrack
D-APLM Applied Mechanics-- not entered -- -- not entered --