May 19, 2019   11:08 p.m. Gertrúda
Academic information system


Hybrid flow forecasting models

Supervisor: prof. Ing. Ján Szolgay, PhD.

Basic information   Workers      

This page shows details on the project. The primary projects are displayed together with a list of sub-projects.

Project description:Hydrological forecasting for integrated management of waters and protection against hydrological extremes needs to meet increasing accuracy standards and requires uncertainty estimates of the forecast. The project aims to approach flow forecasting with a hybrid modeling approach by decomposing the problem into component processes and using process physics models where appropriate and data driven models (time series models and methods of hydro-informatics), where these are best suited. Such an approach will be used with different time steps for typical scenarios in the forecasting of inputs into rainfall-runoff models and flow routing models and for forecasting of the errors of these. Nonlinear time series models including regime switching models, artificial neural networks and machine learning approaches will be developed for the data driven component of the hybrid modeling framework. Further methods of regional transfer of hydrological model parameters will be investigated for the process models in order to enable forecasting in ungauged basins.
Kind of project:APVV ()
Department:Department of Land and Water Resources Management (FCE)
Project identification:APVV-0443-07
Project status:Successfully completed
Project start date :02. 01. 2008
Project close date:30. 06. 2011
Number of workers in the project:3
Number of official workers in the project:0